

# SiGe HBT BiCMOS Technology for Extreme Environment Applications

#### John D. Cressler

School of Electrical and Computer Engineering
791 Atlantic Drive, N.W.
Georgia Institute of Technology
Atlanta, GA 30332-0250 USA

#### cressler@ece.gatech.edu

Tel (404) 894-5161 / FAX (404) 894-4641 http://users.ece.gatech.edu/~cressler/

JPL Extreme Environment Workshop, 5/03

### **Outline**

- Motivation
- Some Reminders on SiGe HBTs
- Operation at Extreme Temperatures
- Radiation Effects
- Summary

### **Communications Market**



- School of Electrical and Computer Engineering
- Portable Communications Devices (900 MHz to multi-GHz)
  - cellular phones, PDA, GPS, wireless internet, ...
- Large Communications Platforms (multi-GHz)
  - global links, radar systems, space-based services, ...
- Computer Links (multi-GHz)
  - wireless LAN, optical fiber links, TV, internet, ...
- Transportation (multi-GHz)
  - collision-avoidance radar, GPS, intelligent highway, ...
  - **Moral 1:** Frequency Bands are Pushing Increasingly Higher
  - **Moral 2:** Huge Market But Stringent Performance Requirements
    - We Need High-Speed + Low-Cost Device Technology!

# The Landscape





# The Landscape





# **Strained-Layer Epitaxy**



School of Electrical and Computer Engineering

SiGe on Si 
 — Compressive Strain in the SiGe Layer



### The Bad News ...



- Si and SiGe Are Not Lattice-Matched (4% difference in lattice constant)
- Places Stringent Restrictions on Film Stability (% Ge + thickness)
- MUST Avoid Film Relaxation (defects)



### Relaxation in SiGe



School of Electrical and Computer Engineering

- Relaxation Occurs Via Defect Formation ... lots of defects!
- Bad News for Devices!



Dislocation
Structures
in a Relaxed
SiGe Film

John D. Cressler, 5/03

### The Good News ...



- Constraints Are "Easy" To Satisfy in Bipolar Transistors (thin base)
- Epitaxial Films Integrate With Conventional Si Processing (CMOS)
- Films are Amazingly Robust (oxidation, implantation, etc.)



### When You Do It Right ....



School of Electrical and Computer Engineering

Seamless Integration of SiGe into Si



No Evidence of Deposition!

# **Electrical Consequences**



School of Electrical and Computer Engineering

- Type-I Band Alignment (Valence Band Offset = 74 meV / 10% Ge)
- Strain-Induced Density-of-States Reduction (bad news)
- Hole Mobility Enhancement (good news)



100 meV grading across 100 nm = 10 kV/cm electric field!

John D. Cressler, 5/03

### **Device Cross-section**



- School of Electrical and Computer Engineering
- Conventional Shallow and Deep Trench Isolation + CMOS BEOL
- Unconditionally Stable UHV/CVD SiGe Epitaxial Base
- 100% Si Fabrication Compatibility



John D. Cressler, 5/03

### **SEM of a SiGe HBT**



School of Electrical and Computer Engineering

• 120 GHz Peak f<sub>T</sub> Process (IBM)



Courtesy of IBM

# **Typical Doping Profile**



School of Electrical and Computer Engineering

#### 1st Generation

| $W_{F}$ (um)                | 0.42       |
|-----------------------------|------------|
| peak f <sub>T</sub> (GHz)   | <b>5</b> 0 |
| peak f <sub>max</sub> (GHz) | 70         |
| BV <sub>CEO</sub> (V)       | 3.3        |

#### **2nd Generation**

| $W_{F}$ (um)                | 0.18 |
|-----------------------------|------|
| peak f <sub>T</sub> (GHz)   | 120  |
| peak f <sub>max</sub> (GHz) | 100  |
| BV <sub>CEO</sub> (V)       | 2.5  |

#### State-of-the-art

 $\begin{array}{ll} W_{E} \;\; (um) & 0.12 \\ peak \; f_{T} \;\; (GHz) & 207 \\ peak \; f_{max} \;\; (GHz) & 285 \\ BV_{CEO} \;\; (V) & 1.7 \end{array}$ 



# **Global SiGe Progress**



School of Electrical and Computer Engineering

• Multiple Companies Are Working in the >100 GHz f<sub>T</sub> Range



### **SiGe BiCMOS Evolution**



School of Electrical and Computer Engineering

- Best-of-Breed CMOS Comes Along for the Ride!
- Enables System-on-a-Chip Integration

| Parameter                   | First | Second | Third |  |
|-----------------------------|-------|--------|-------|--|
| $W_{E,eff}$ ( $\mu$ m)      | 0.42  | 0.18   | 0.12  |  |
| peak β                      | 100   | 200    | 400   |  |
| $V_A(V)$                    | 65    | 120    | > 150 |  |
| $BV_{CEO}(V)$               | 3.3   | 2.5    | 1.7   |  |
| $BV_{CBO}(V)$               | 10.5  | 7.5    | 5.5   |  |
| peak $f_T$ (GHz)            | 47    | 120    | 207   |  |
| peak $f_{max}$ (GHz)        | 65    | 100    | 285   |  |
| min. NF <sub>min</sub> (dB) | 0.8   | 0.4    | < 0.3 |  |

**SiGe HBT** 



| Parameter                 | First<br>nFET | First<br>pFET | Second<br>nFET | Second<br>pFET | Third<br>nFET | Third<br>pFET |
|---------------------------|---------------|---------------|----------------|----------------|---------------|---------------|
| $L_{eff}$ ( $\mu$ m)      | 0.36          | 0.36          | 0.14           | 0.15           | 0.092         | 0.092         |
| $V_{DD}(V)$               | 3.3           | 3.3           | 1.8            | 1.8            | 1.5           | 1.5           |
| $t_{ox}$ (nm)             | 7.8           | 7.8           | 4.2            | 4.2            | 2.2           | 2.2           |
| $V_{T,lin}$ (mV)          | 580           | -550          | 326            | -415           | 250           | -210          |
| $I_{D,sat} (\mu A/\mu m)$ | 468           | 231           | 600            | 243            | 500           | 210           |

Si CMOS

# **Technology Leverage**



- Si Has Come a Long Way! (competitive with InP HBT technologies)
- Substantial Power Savings Opportunities (new system-level paradigm)
- Maintains Si Economy-of-Scale



### **Energy Band Diagram**





### The SiGe HBT



The Idea: Put Graded Ge Layer into the Base of a Si BJT

#### **Primary Consequences:**

- smaller base bandgap increases electron injection (β 1)
- field from graded base bandgap decreases base transit time (f<sub>T</sub> 1)
- base bandgap grading produces higher Early voltage (V<sub>△</sub> 1)



$$\left. \frac{\beta_{SiGe}}{\beta_{si}} \right|_{V_{BE}} \equiv \Xi = \left\{ \frac{\widetilde{\gamma} \, \widetilde{\eta} \, \Delta E_{g,Ge}(grade)/kT \, e^{\Delta E_{g,Ge}(0)/kT}}{1 - e^{-\Delta E_{g,Ge}(grade)/kT}} \right\}$$

$$\frac{\tau_{b,SiGe}}{\tau_{b,Si}} = \frac{2}{\widetilde{\eta}} \frac{kT}{\Delta E_{g,Ge}(grade)} \left\{ 1 - \frac{kT}{\Delta E_{g,Ge}(grade)} \left[ 1 - e^{-\Delta E_{g,Ge}(grade)/kT} \right] \right\}$$

$$\left. \frac{V_{A,SiGe}}{V_{A,Si}} \right|_{V_{BE}} \equiv \Theta \simeq e^{\Delta E_{g,Ge}(grade)/kT} \left[ \frac{1 - e^{-\Delta E_{g,Ge}(grade)/kT}}{\Delta E_{g,Ge}(grade)/kT} \right]$$



III-V HBT Properties + Si Processing Maturity!
Bandgap Engineering in Si!

### **Outline**

- Motivation
- Some Reminders on SiGe HBTs
- Operation at Extreme Temperatures
- Radiation Effects
- Summary

# Si BJTs at Cryo-T



- Degradation in Current Gain with Cooling (bad news)
  - driven by emitter-to-base bandgap narrowing differences
- Degradation in Speed with Cooling (bad news)
  - driven by diffusivity decrease in base transit time and base freeze-out



$$\beta_{ideal}(T) = \frac{qD_{nb}(T)\; L_{pe}(T)\; N_{de}^+(T)}{D_{pe}(T)\; W_b(T)\; N_{ab}^-(T)}\; e^{(\Delta E_{gb}^{app} - \Delta E_{ge}^{app})/kT} \label{eq:beta}$$



$$\tau_{b,Si}(T) = \frac{W_b^2(T)}{2D_{nb}(T)} = \frac{qW_b^2(T)}{2 kT \mu_{nb}(T)}$$

# SiGe HBTs at Cryo-T?



School of Electrical and Computer Engineering

#### The Idea: Put Graded Ge Layer into the Base of a Si BJT

#### **Primary Consequences:**

- smaller base bandgap increases electron injection (β 1)
- field from graded base bandgap decreases base transit time  $(f_T \uparrow f_T)$
- base bandgap grading produces higher Early voltage (V<sub>A</sub> 1)



$$\left. \frac{\beta_{SiGe}}{\beta_{si}} \right|_{V_{BE}} \equiv \Xi = \left\{ \frac{\widetilde{\gamma} \, \widetilde{\eta} \, \Delta E_{g,Ge}(grade) / \underline{kT} \, e^{\Delta E_{g,Ge}(0) / \underline{kT}}}{1 - e^{-\Delta E_{g,Ge}(grade) / \underline{kT}}} \right\}$$

$$\frac{\tau_{b,SiGe}}{\tau_{b,Si}} = \frac{2}{\widetilde{\eta}} \frac{\underline{kT}}{\Delta E_{g,Ge}(grade)} \left\{ 1 - \frac{\underline{kT}}{\Delta E_{g,Ge}(grade)} \left[ 1 - e^{-\Delta E_{g,Ge}(grade)/\underline{kT}} \right] \right\}$$

$$\left. \frac{V_{A,SiGe}}{V_{A,Si}} \right|_{V_{BE}} \equiv \Theta \simeq e^{\Delta E_{g,Ge}(grade)/kT} \left[ \frac{1 - e^{-\Delta E_{g,Ge}(grade)/kT}}{\Delta E_{g,Ge}(grade)/kT} \right]$$

All kT Factors Are Arranged to Help at Cryo-T!

### **Device Characteristics**



School of Electrical and Computer Engineering

#### SiGe Performance Improves With Cooling (good news)

- current gain and output resistance (Early Voltage) increases with cooling
- frequency response / noise improve with cooling
- abrupt, heavily doped epitaxial base controls freeze-out



# **Digital Circuits**



#### SiGe Enables High-Speed Circuits at Cryogenic Temperatures

- frequency response improves with cooling
- abrupt, heavily doped epitaxial base controls freeze-out
- higher large-signal g<sub>m</sub> allows reduced logic swing operation





Unloaded

Loaded

# **Recent Cryo-T Results**



- 200 GHz SiGe Technology Works <u>VERY</u> Well at 77K
- At 85K,  $f_T > 250$  GHz and  $NF_{min} = 0.30$  dB with  $G_{ass} = 17$  dB at 14 GHz!



# **Helium Temperature?**



School of Electrical and Computer Engineering

- SiGe Is Clearly Capable of Operation Down to the Helium-T Regime
  - base doping is above Mott transition minimal base freeze-out
  - more work needed to flesh out the HeT design/operation space



John D. Cressler, 5/03

# **High Temperatures?**



School of Electrical and Computer Engineering

#### SiGe Operates Well Up to at Least 300C

- minimal CB leakage + adequate current gain (some ac degradation expected)
- Ge profile can be optimized for high-T if necessary
- SiGe on SOI is also a valid technology path if required



### **Outline**

- Motivation
- Some Reminders on SiGe HBTs
- Operation at Extreme Temperatures
- Radiation Effects
- Summary

### **Radiation Effects**



- The Holy Grail of the Space Community
  - IC technology space-qualified without additional hardening

proton belts

electron belts



### Experiments (1995-2003)



#### SiGe HBT BiCMOS Technology Generations:

- 1st Generation (IBM 5HP 50 GHz HBT + 0.35µm CMOS)
- 2<sup>nd</sup> Generation (IBM 6HP 50 GHz HBT + 0.25µm CMOS)
- 3<sup>rd</sup> Generation (IBM 7HP 120 GHz HBT + 0.18µm CMOS)
- 4<sup>th</sup> Generation (IBM 8HP 200 GHz HBT)

#### Radiation Sources:

- gamma rays
- protons (1.75 MeV to 200 MeV)
- neutrons
- low dose rate gamma
- gamma at 77K

#### Single Event Effects:

- heavy ion
- proton
- ion microbeam



### **Recent Results**



- Multi-Mrad Total Dose Hardness (with no intentional hardening!)
- Radiation Hardness Due to Epitaxial Base Structure (not Ge)
  - thin emitter-base spacer + heavily doped extrinsic base + very thin base



**63 MeV protons** 

# Radiation + Cryo?



- Compare Total Dose Tolerance Between 300K and 77K
- 77K Gamma Irradiation
  - even less damage than at 300K!



# **Summary**



#### SiGe HBT BiCMOS Technology

- bandgap engineering in Si (high speed + low cost + integration)
- SiGe ideally suited for RF, analog, and digital circuits
- BiCMOS gives many system-on-a-chip possibilities

#### SiGe For Extreme Temperatures

- all properties improve down to 77K (and below)
- works fine up to 300C

#### SiGe For The Radiation Environment

- epi-base structure has built-in total-dose hardness
- SEE mitigation approaches currently being pursued



John D. Cressler, 5/03